

Phoenix, AZ December 2010

Gerald (Gerry) Hiatt, Ph.D.
U.S. EPA, Region 9
415-972-3064
hiatt.gerald@epa.gov

• • Overview

- ➤ Evaluating Vapor Intrusion
- Soil Gas Screening Levels in
 Assessment of Vapor Intrusion

Vapor Intrusion

- Volatile
 contaminants
 in soil gas
 can migrate
 up and into
 buildings
- Potential to create indoor air exposures
- Is there a risk?

Evaluation for Vapor Intrusion

- There are many impacts on indoor air:
 - Outdoor Air
 - Cleaning agents, toiletries & other consumer products used indoors
 - Vapor intrusion
- Evaluation of possible vapor intrusion may include:
 - Review of contaminant volatility and toxicity
 - Comparison of soil and groundwater concentrations to vapor intrusion screening levels
 - Soil gas sampling
 - Monitoring of indoor and outdoor air
 - Modeling of vapor movement from subsurface soil & groundwater into buildings

Soil Gas and Indoor Air

- ➤ IF vapor intrusion is occurring, indoor air levels will be much lower than soil gas levels
 - most indoor air comes from outside (windows, doors, AC)
 - any soil gas that does enter a building gets diluted
- How to relate soil gas levels to indoor air levels?

Soil Gas Screening Levels to Evaluate Vapor Intrusion

Goal: Evaluate if soil gas could be entering a building at concentrations of potential health concern – 3 Steps:

- 1. Identify protective indoor air concentration
- 2. Assess penetration: soil gas into indoor air
- 3. Calculate from protective indoor air concentration to corresponding soil gas concentration

Step 1: Protective Indoor Air Concentrations

Indoor Air Risk-Based Screening Levels (RBSLs)

- **TCE:** 1.2 μg/m³
- ightharpoonup PCE: 0.4 µg/m³

(micrograms per cubic meter of air)

Basis:

- ➤ 1 in one-million increased chance of developing cancer
- ➤ 24 hours/day, 350 days/year, 30 years exposure

 Less frequent and/or shorter exposures = lower risk

Step 1: Protective Indoor Air Concentrations

Candidate Indoor Air Risk-Based Screening Levels

VOC	1 in One Million Cancer Risk	10 in One Million Cancer Risk	100 in One Million Cancer Risk	Non-Cancer Screening Level		
TCE	1.2	12	120	10		
PCE	0.4	4.1	41	35		
		Units μg/m³ (micrograms per cubic meter)				

Indoor air concentration corresponding to a 1 in one-million increased chance of developing cancer is the most stringent and health protective.

Step 2: Soil Gas Penetration Into Indoor Air

Soil Gas Attenuation Factor

- > 0.0023 ($\frac{1}{434}$) for a residential building
 - Greater than 400-fold dilution: soil gas to indoor air
 - 434 units in soil gas >> 1 unit in indoor air

Conditions:

- Sandy soil maximum soil gas movement
- Low indoor air turnover
- Slab on grade construction

Step 3: Soil Gas Screening Levels (SGHHSLs)

Soil Gas Human Health Screening Levels

 Calculate soil gas concentrations corresponding to the indoor air risk-based screening levels protective for human health

VOC	Indoor Air Risk- Based Screening Level	Attenuation Factor	Soil Gas Human Health Screening Level
TCE	1.2	0.0023	520
PCE	0.4	0.0023	180

THEN indoor air concentrations will be less than:

➤TCE: 1.2

▶PCE: 0.4

IF soil gas concentrations are less than:

➤TCE: 520

➤PCE: 180

- • Questions?
 - > Group
 - > "Open House"

TCE & PCE Risk-Based Screening Levels

• • • Why Not Just Test Indoor Air?

- ➤ More intrusive
- ➤ More time-consuming
- Does not identify source
- ➤ High potential for interference from other chemicals indoors
- BUT we may still decide to sample indoors depending on soil gas results...

Testing for Vapor Intrusion Soil Gas

• • • Vapor Intrusion Factors

- Contaminant levels in soil & groundwater
 - Higher levels = vapor intrusion more likely
 - Lower levels = vapor intrusion less likely
- Depth to contamination
 - Shallow = vapor intrusion more likely
 - Deeper = vapor intrusion less likely
- Soil properties can promote or retard vapor intrusion
- > Features of overlying buildings:
 - Air exchange rates
 - Indoor air pressure
 - Openings to surface